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Abstract

Localization and mapping has been an area of great im-
portance and interest to the robotics and computer vision
community. It has traditionally been accomplished with
range sensors such as lasers and sonars. Recent improve-
ments in processing power coupled with advancements
in image matching and motion estimation has allowed
development of vision based localization techniques. De-
spite much progress, there are disadvantages to both
range sensing and vision techniques making localization
and mapping that is inexpensive and robust hard to at-
tain. With the advent of RGB-D cameras which provide
synchronized range and video data, localization and
mapping is now able to exploit both range data as well as
RGB features. This thesis exploits the strengths of vision
and range sensing localization and mapping strategies
and proposes novel algorithms using RGB-D cameras.
We show how to combine existing strategies and present
through evaluation of the resulting algorithms against a
dataset of RGB-D benchmarks. Lastly we demonstrate
the proposed algorithm on a challenging indoor dataset
and demonstrate improvements where either pure range
sensing or vision techniques perform poorly.

1 Introduction

The ability for autonomus robots to localize in novel
environments and generate accurate 3D maps has been
of great interest, and heavily researched by the robotics
community. Traditional mapping was performed with
sensors such as lasers and sonars. While successful solu-
tions have been attained [1] , they either required expen-
sive laser range finders or they were demonstrated with
less expensive sonars in very simplistic environments [2].
The increase in the processing speed as well as advance-
ments in vision based motion estimation and invariant
feature based matching has fueled the progress in vision
based localization. Vision based mapping takes advan-
tage of visual features, matching them frame by frame

to compute accurate relative poses between them. While
vision based localization has made great strides [3], with
the exception of few [4] the focus on the large scale 3D
reconstruction has been limited and the models obtained
are often characterized by a sparse set of features.

More recently, efforts have been made to combine
range finding sensors with vision sensors to overcome
the weaknesses of both. Research in this area has been
revived by availability of RGB-D cameras, which pro-
vide video (RGB) data just the same as a normal camera,
along with per-pixel depth information.

The goal of this thesis is to exploit the strengths of
previous strategies which use range and vision sensing
and to provide a robust solution for localization and
mapping with an RGB-D sensor. This will be accom-
plished by combining mapping algorithms using range
information and visual features to obtain a robust and
accurate system, capable of coping with environments
where either pure visual or range sensors fail.

Overview Related work is detailed in Chapter II. Pre-
liminaries for RGB-d mapping are discussed in Chapter
III. Chapter IV analyzes the proposed RGB-D mapping
algorithms. Testing and experimental process with the
RGB-D data set as well as results of the experiments are
reviewed in Chapter V. Chapter VI provides closure on
the results as well as future work.

2 Related Work

Existing simultaneous localization and mapping (SLAM)
research has differed in sensor modality, the types of
maps they strive to create, and their use. Common sys-
tems use modalities such as lasers, camera vision or both
to acquire metric, topological or hybrid maps. Metric
mapping algorithms have ranged from on-line recursive
update strategies, pairwise non-linear motion estima-
tion strategies, loop closure [5], and global optimization
methods [1].
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In this work we focus on metric SLAM using RGB-D
cameras, this problem can be broken down into three
sub-problems: data association and motion estimation
from two views, loop closure detection, and globally
consistent motion estimation.

While the latter portion is often similar regardless of
modality, data association and motion estimation dif-
fer. An overview of the techniques for globally consis-
tent motion estimation can be found in [1]. Considering
that RGB-D sensors have characteristics of range finding
devices and camera based vision systems, techniques
for motion estimation between two frames have been
adopted from previous research on both modalities, as
described in the following sections.

Laser Mapping Until recently laser range finders were
the sensor of choice for localization and mapping. 3D
laser range finders are able to provide accurate and fast
3D depth information. Using registration techniques
such as [6], robotic systems are able to quickly com-
pute transformations between corresponding laser scans.
Laser based mapping work done by [7] is thought to be
the original work on globally consistent mapping with
laser range finders. This work involves collecting local
pose information between laser scans, either by scan
matching or odometry. The poses and scans are kept
in memory and are globally aligned using a maximum
likelihood criterion. These methods benefit from loop
constraints, which can greatly improve the local pose
estimates.

More recently [8] uses scan matching and Rao-
Blackwellized particle filtering. There has been a large
number of works published on problems of data associ-
ations in the context of range sensing; ranging from data
associations of raw scans to various feature based meth-
ods. Some discussion of the topic can be found in [9].
One of the key components of the scan matching stage
is the so called Iterative Closest Point (ICP) algorithm
originally proposed by [10]. Our Proposed method will
be based on a variation of an ICP algorithm and will be
described more in detail in Chapter III.

While laser range finders can create highly accurate
metric maps, there are some drawbacks. With laser range
finders accuracy often decreases with the price of the
sensor. Less expensive sensors will often provide am-
biguous motion estimates when displacements are large.
Another drawback is the lack of visual information in
the outputted 3D map, which is often not informative to
the user.

Vision Mapping The need to robustly differentiate be-
tween scenes with similar geometry and obtain richer
models has spurred research in vision based mapping.
With the advances in scale invariant image feature match-
ing such as [11] and [12], research in vision based frame
matching, loop closure detection, and 3D mapping led

to several successful solutions to the vision based local-
ization problem. Vision mapping research has seen use
of a large variety of methods. The use of invariant fea-
tures coupled with increases in computational power
has allowed efficient searches in large databases as well
as accurate mapping of features between frames. Using
a single perspective camera, [13] creates a topological
representation online by adding images to a database ad
creating a link graph. An image matching scheme then
allows for mapping and localization. Due to the com-
pact representation, this method can maintain a graph
containing millions of images in real time. A SLAM tech-
nique developed by [14] utilizes a stereo vision system
to achive local pose estimation. This method relys solely
on input images from the stereo camera. In this method
visual correspondences are calculated using scale invari-
ant features, and motion estimation is calculated via the
RANSAC algorithm.

Along with the vision sensing modality comes a
list of unique drawbacks. Maps generated by vision
based modalities are sparser then those generated by
range finders. This is attributed to a lower data rate,
and the use of correspondences by means of visual
features which can be sparse in certain environments.
Perhaps the most critical weakness of vision based
mapping is also its greatest strength, visual features.
There are certain texture-less environments where there
are a distinct lack of the crucial visual features that are
needed to generate correspondences. An example of
this is the common office hallway, white walls and often
featureless carpets. In this situation it is very difficult
for a vision system to match features between frames,
especially in the precense of large motions.

Multi Sensor Mapping The common drawbacks of
both range finder and vision based modalities, spurred
research into techniques that utilize both laser and vi-
sion sensors. A recent example of this is [15], who uses
both a laser scanner and a camera installed on a mobile
robot to incrementally build a 3D metric map of the en-
vironment. The map is built from laser generated point
clouds. Images taken from the camera are used for loop
closure detection. This method of loop closure is tolerant
of repetitive visual structure and takes advantage of the
strengths of both laser and vision data. The combina-
tion of both sensors allows for highly accurate odometry
estimation from the laser data coupled with robust and
quick loop estimation from the camera, effectively mak-
ing the fusion approach more effective then either sensor
alone.

These techniques may overcome some of the obstacles
of range finding and vision sensors, but they still rely on
expensive laser sensors, additionally it can be difficult
to associate 3D range data with the collected vision data.
Previous techniques which use both laser and vision
required calibration of the two sensors [16], in order to
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Figure 1: Microsoft Kinect for XBOX-360

accurately register the two sensing modalities and hence
making the combined sensors less flexible.

2.1 RGB-D Mapping

RGB-D sensors solve the problem of data correspon-
dence found in multi sensor mapping by providing RGB
images synchronized with per-pixel depth information.
RGB-D sensors are able to provide both visual and 3D
depth information, which allow us to exploit the direct
correspondence of range data to visual features. This
allows for direct correspondence of 3D range data, by
means of extracting and matching visual features be-
tween frames. Being a relatively new sensor, research in
RGB-D mapping is in its infancy. Current examples of
RGB-D mapping techniques are [17] and [18]. Details of
both of these algorithms can be found in Section 3.4.

2.1.1 RGB-D sensor details

For our experiments we used the Microsoft
Kinect c©sensor, it is an RGB plus depth sensor ca-
pable of providing both RGB images per-pixel depth
information at a 30Hz rate. Due to its relatively low
price vs the quality of its output it is ideal for robotics
research. A disadvantage of the sensor is its limited field
of view of 57 ◦ horizontally and 43 ◦ vertically. This is
in contrast to current laser range scanners which often
provide scans of 180 ◦ or 360 ◦ scans. The Kinect also has
a motor on its vertical axis capable of tilting the sensor
with a range of motion of 54 ◦.

The RGB camera The RGB camera uses 8-bit VGA
640x480 resolution, along with a Bayer color filter to
provide 30 frames per second.

The Depth sensor The Depth sensor is capable of sup-
plying 11-bit per-pixel depth information corresponding
with the video stream. This is achieve by an infrared pro-
jector along with a CMOS (complimentary metal-oxide
semiconductor). A major benefit of this approach is the
kinect’s ability to calculate depth data regardless of the
lighting conditions. The depth sensor has a range of
1.2-3.9m.

Figure 2: Example RGB-D Frames

3 Preliminaries

In this chapter we will describe the component algo-
rithms needed to perform data association and motion
estimation between two views. This chapter acts as
a primer, describing in detail the algorithms and tech-
niques needed for RGB-D SLAM. The individual com-
ponents of the data association and motion estimation
techniques are as follows:

1. Feature extraction and matching.
2. Coordinate conversion
3. Outlier rejection, correspondence registration.
4. 3D Point cloud Registration.

There are several alternatives of how to carry out the
data association and motion estimation using two con-
secutive frames. In purely visual based approaches the
two view motion estimation is typically proceeded by ex-
tracting and matching features in the consecutive views,
followed by robust motion estimation based on epipolar
geometry [19]. This technique enables estimation of the
relative pose T = (R, t) between two views, using closed
form strategy followed by non-linear refinement. Due to
the absence of 3D information the translation component
can only be estimated up to a scale. The first stage of
the methods is the process of extraction of robust scale
invariant features (SIFT) and their associated descrip-
tors. Towards this end we choose commonly used SIFT
features.

The SIFT algorithm [11] developed by David Lowe,
extracts and matches visual features and their associ-
ated descriptors between frames, it is described in sec-
tion 3.1. The putative matches are then converted from
2D image coordinates to 3D world coordinates. The
matching 3D point clouds are then refined by the ro-
bust RAndom SAmple Consensus (RANSAC) algorithm.
The RANSAC algorithm estimates an initial transfor-
mation as well as outlier rejection based on initial fea-
ture matches obtained by SIFT matching, it is described
in Section 3.2. Depending on the environment, the
RANSAC transformation may contain a transformation
with a great amount of error. If the RANSAC error is too
high the transformation is corrected by the generalized
ICP algorithm, which is described in section 3.3.1.
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Figure 3: SIFT Matching

3.1 Feature Extraction and Matching

SIFT is an algorithm used to extract point features and
their associated descriptors from images. Features ex-
tracted from SIFT are invariant to changes in the image,
such as scaling, rotation, and translation. Once features
are extracted from an image, they can be easily matched
up in subsequent frames. Once features are extracted
from an image, they can easily be matched in subsequent
frames.

A common problem with matching frames with SIFT
is a lack of features between frames. Another problem is
features that are mismatched. These problems depend to
a large extent on the type of environment, office hallways
and areas with low lighting are common examples of
environments with limited features. In order to success-
fully estimate motion between frames based off of visual
features, mismatches must be ignored. In the case of
having a small amount of features, an entirely different
method might be needed.

3.2 RANSAC

RANdom SAmpling and Consensus (RANSAC) [20] is
an iterative method for estimating mathematical mod-
els in the presence of data which contains outliers. The
general RANSAC algorithm is detailed in figure 4. The
inputs to RANSAC are a mathematical model and data
which the model is to be fitted to. The method works
by iteratively selecting random samples of the dataset
and fitting the model to that subset of data. Fitting
the model generates a hypothesis model, which is then
tested against the entire dataset. RANSAC is often
used to extract inliers from associated range scans, as
well as generate an initial motion estimate between the
two scans. For our case we use RANSAC to estimate
motion between frames based off of corresponding 3D
point clouds. The corresponding clouds are obtained by
matching SIFT features and converting the 2D matches
from image coordinates to 3D world coordinates with
the Kinect’s depth data. RANSAC is able to estimate a
motion between the two point clouds while simultane-
ously removing likely mismatches.

For our purposes we use RANSAC to estimate motion
corresponding 3D point clouds, as well as eliminating
outliers from the correspondences. The corresponding

RANSAC[data,Model]
1: for itr = 0→ maxIterations do
2: sample← extractSamples(model)
3: for points ∈ data 6∈ sample do
4: p̂←{point in data transformed by T0}
5: p←{corresponding point in model}
6: err ← || p̂− p||2
7: if err ≤ thresh then
8: {Add p to inliers}
9: end if

10: end for
11: {If there are enough candidate inliers, then this is

a valid model}
12: if sizeo f (candInliers) ≥ minSize then
13: T ← estimateModel(inliers)
14: ( p̂, p)← {inlier elements in Model and Data}
15: estimateErr ← ∑m

i=0 |T · p̂i − pi|2
16: if globalErr ≤ bestErr then
17: BestModel ← proposedModel
18: BestErr ← globalErr
19: end if
20: end if
21: end for

Figure 4: Algorithm: RANSAC

clouds are obtained by matching SIFT features and con-
verting the 2D matches from pixel coordinates (i, j) to 3D
world coordinates (x, y, z), using the following formula:

z← depth(i, j)
y← (j− cy) · (z/ fx)
x ← (i− cx) · (z/ fy)

The RGB-D sensor provides per-pixel depth informa-
tion, therefore given a set of pixel coordinates (i, j) the z
coordinate is simply extracted from the depth data. The
(x,y) coordinates can then be calculated based off of the
camera’s intrinsic matrix, with (cx, cy) being the optical
center of the camera, and ( fx, fy) being the focal length
of the camera.

3.3 Iterative Closest Point

Iterative closest point (ICP) is a technique used to regis-
ter point clouds, it was first developed by [10]. The ICP
algorithm can be partitioned into the following steps...

1. given point clouds {ai} and {bi} from two scans,
find the corresponding points between the scans.

2. Compute a rigid body transformation between {ai}
and {bi}.

3. Transform all bi’s with the estimated transformation
to align the scans.
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The existing techniques again differ in the means of
finding the corresponding points, in the choice of the ob-
jective function and the optimization techniques for com-
puting the estimates. Most commonly the corresponding
points are found using the nearest neighbor methods in
3D space, which works well when the displacements
between the frames are small. In the optimization stage
one often chooses first order approximation of the trans-
form, which can be estimated using linear techniques
and updates the correspondences in an iterative man-
ner [21]. Hence repeating these steps will either converge
to the target transformation, or fall when the maximum
amount of iterations is reached. Alternatively one could
use closed form pose estimation [22] which works well
providing the set of initial correspondences is accurate.

There are a few variants of ICP, all containing the
same basic structure but differing in the objective func-
tion. The earliest variant is the so called point-to-point
ICP method, named after the simple Euclidian distance
objective function.

T ← argmin
T

∑m
i=0 ‖ T · bi − ai ‖2

Where T = (R, t) and ai is a point in cloud A = {ai},
and bi is a point in point cloud B = {bi}. Improving
upon the point to point method, point to plane ICP was
developed by [23]. This method takes advantage of sur-
face normal information of point clouds and is achieved
by simply changing the objective function.

T ← argmin
T

∑m
i=0 ‖ ηi (T · bi − ai) ‖2

where ηi is the surface normal projection at point ai
which is the nearest neighbor of bi, thus computing the
error between one point and the projection of a point
onto it’s surface normal. In order for this method to
work, it must make the assumption that the point clouds
being compared are not just arbitrary points in space,
but a collection of data from a geometrically known
environment. Which is always the case for range sensor
data.

The advantages of any ICP variant is the simplicity
of the algorithm, and quick performance when the near-
est neighbor calculations are optimized. This is typi-
cally accomplished with KD trees. A drawback of the
ICP algorithm include the assumption that there is a
full overlap between the two point clouds. This almost
certainly never true when attempting to register range
scans. luckily this problem can be resolved by imple-
menting a max distance variable, which states that corre-
spondences greater than the max distance are not con-
sidered. Another drawback the assumption that the the
data is that of a known geometric surface, this problem in
part is solved by point-to-plane ICP. Yet point-to-plane
only takes surface normal information from one scan
and knows nothing of the second. The generalized ICP
method is able to model a plane-to-plane method, which

considers the surface information of both scans. It can
also be used to model the previous ICP variants.

3.3.1 Gen-ICP

Generalized ICP developed by [24], replaces the error
metric of point-to-point and point-to-plane with a prob-
abilistic model. This approach can not only model both
previous algorithms but also a plane-to-plane approach
as well. It achieves this by assuming that both point
clouds have uncertainty governed by an underlying
Gaussian distribution. A set of points Â = {ai} and
B̂ = {bi} generate Â and B̂ given the following model.

ai ∼ N (âi, Ci
A) and bi ∼ N (b̂i, Ci

B)

with Ci
A and Ci

B being covariance matrices associated
with measured points in each respective cloud. Assum-
ing perfect correspondences, one can assume that a cor-
rect transformation T∗ will yield b̂i = T∗ âi. Given an
arbitrary transformation T, let di

(T) = bi−T · ai. The dis-
tribution from which di

(T∗) is draw, can then be defined
as:

d(T
∗)

i = N (0, Ci
B + (T∗)Ci

A(T∗)T)

Gen-ICP then uses Maximum likelihood estimation
(MLE) to iteratively compute a transformation T, yield-
ing the following minimization problem.

T = argmin
T

∑n
i=0di

(T)T
(Ci

B + (T∗)Ci
A(T∗)T)

−1
di

(T)

This formula replaces the Euclidian error metric of
the previous ICP algorithms. Different values of
Ci

A and Ci
B will transform the algorithm from point-

to-point, point-to-plane, and plane-to-plane.
To model point-to-point ICP one may set Ci

B =

I, and Ci
A = 0. This gives the formula T =

argmin
T

∑n
i=0d(T)i

T
di

(T), which is exactly the sum of the

errors of the Euclidian distance between the points.
Similarly, point-to-plane ICP can be modeled by set-
ting Ci

B = Pi
−1 and Ci

A = 0, with Pi being the or-
thogonal projection matrix, projecting onto the span of
the surface normal at bi. This yields the error metric

T = argmin
T

∑n
i=0d(T)i

T
Pi
−1di

(T). This is exactly the error

between a point in A, and the projected point in B.
While point-to-plane ICP only considers the surface

normals of one point cloud, plane-to-plane looks at both,
assuming that the scans are made up of real world sur-
faces, and not just random points in the environment.
To take advantage of this, points have high covariance
along their surface planes and low covariance along their
surface normals. This effect is achieved by setting the
covariances to:
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Figure 5: Plane To Plane

C =

 ε 0 0
0 1 0
0 0 1


Where ε is a very small constant representing the covari-
ance along the surface normal. The Covariances of each
model are then calculated by:

Ci
A = Rµ i · C · Rµ i

T and Ci
B = Rν i · C · Rν i

T

Where µ and ν are the normal vectors of points ai and bi
respectively, and Rµ being the rotation that transforms
µi ← ai. This gives plane-to-plane a distinct advantage
over point-to-plane, since both surface are taken into
account.

Generalized ICP
1: T ← T0
2: {ai ∈ A, bi ∈ B}
3: Ci

A ← {Covariance matrix associated with mea-
sured points in cloud A}

4: Ci
B ← {Covariance matrix associated with mea-

sured points in cloud B}
5: for i = 0→ MaxIterations do
6: T← argmin

T
∑m

i=0 dT
i

T
(Ci

B + T · Ci
A · TT)

−1 · di
T

7: end for

Figure 6: Algorithm: Generalized ICP

ICP algorithms are often used to reconstruct 2D and
3D models and localize robots by computing motion
between scans. There are however shortcomings de-
pending on the sensor modality. Range finders typically
have trouble with data association. When displacements

in the scans are large, computing nearest neighbors can
be difficult. If the displacement is too large, ICP may
not converge. Vision based cameras can perform data
association easily with visual features. There are times
however when visual features are sparse. If data associ-
ation does not provide a sufficient amount of correspon-
dences, ICP may not converge. The other downside to
motion estimation with cameras, is that they are just not
as accurate as range finders.

The RGB-D sensor has a distinct advantage over range
finders and cameras when estimating motion with ICP.
In areas where range finders have difficulty associating
data, when displacements in the scans are too large, the
RGB-D camera can rely on visual feature matching. In
feature limited environments, where vision based sys-
tems would fail, RGB-D sensors can rely on pure depth
data. The later example can be seen in our GMU hallway
experiments.

3.4 RGB-D ICP

The RGB-D ICP method, developed by [18] is one of
the first algorithms created for RGB-D mapping. RGB-
D images are first matched using SIFT features and a
motion between them is estimated with RANSAC. The
RANSAC estimate is then used to initialize point-to-
plane ICP. The transformations from both RANSAC and
point-to-plane ICP are both considered in the objective
function where a user parameter (α) gives weight to two
sets of correspondences. This allows one to bias the
sensor towards a more visual or depth based estimation.
The Algorithm is coined RGBD-ICP and can be seen in
Figure 3.4.

RGBD-ICP[A,B]
1: FA ← ExtractFeatures(A)
2: FB ← ExtractFeatures(B)
3: [t∗, A f ]← RANSAC(FA, FB)
4: while iterations ≤ maxIterations ∨ Converged ==

true do
5: Ad ← ComputeClosestPoints(A, B, t∗)
6: t∗ ← argmin

t
α( 1
|A f | ∑i∈A f

wi‖t · bi − ai‖2 + (1 −

α)( 1
|Ad | ∑j∈Ad

wj‖ηj(t · bj − aj)‖2

7: end while

Figure 7: Algorithm: RGBD-ICP

When α is set to zero, only the ICP features are con-
sidered and when α is set to one only RANSAC transfor-
mations are taken into account. As transformations are
calculated, loop closure and global optimization is also
being performed to keep an accurate map.
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3.5 RGB-D SLAM

The RGB-D SLAM method is very similar to [18], it can
be summarized in the following steps:

1. Input: RGB-D Images;
2. feature extraction and matching (SURF);
3. motion estimation (RANSAC);
4. motion refinement (ICP);
5. motion optimization (HOGMAN);

The first step is simply the acquisition of RGB-D
frames from the sensor. Features are extracted using the
SURF method instead of SIFT. An initial motion is then
estimated and outliers are removed using the RANSAC
method and the estimated motion is then refined by
generalized ICP. The final step is global optimization
performed by the HOGMAN method. In contrast to [18],
features are extracted with the SURF method instead
of SIFT, and motion is refined using generalized ICP
instead of point-to-plane ICP.

A downside of both [17] and [18] is the mandatory
use of RANSAC. There are situations where the initial
motion estimated by RANSAC is wrong to a degree
where initializing ICP with this motion will cause the
algorithm to not converge. In this situation it is far better
to ignore the RANSAC result and start generalized ICP
from scratch. This can be performed using the user given
weights in [18], but there must be a method to switch
between RANSAC and ICP in order to successfully tra-
verse dynamic environments. The main contribution
of our paper is the use of generalized plane-to-plane
ICP, as well as a novel approach to using both RANSAC
and GICP together to solve for these situations that are
difficult for RGB-D sensors to overcome.

4 Dynamic RGB-D Mapping

In this section our approach to motion estimation be-
tween two views is described. Our method combines
matching and motion estimation strategies found in both
visual and range sensing modalities. The general outline
of a common RGB-D mapping technique consists of the
following steps:

1. Feature detection and matching;
2. Initial rigid body motion estimation with RANSAC;
3. Estimation refinement with ICP registration;

This method however is not robust in situations when
RANSAC fails. This can happen for two reasons: there
are not enough visual features in the environment, or
there are not enough common features between the two
frames. The former case can be seen in common indoor
environments such as office hallways. The latter case can
be attributed to rapid movement, small overlap between
consecutive views or possible data loss due to commu-
nication and threading issues. An example of this can

be seen in Figure 8, the only overlap between the two
frames is the corner wall which is essentially featureless.
Range sensor scans however would be able to easily
associate the data points between the two frames. In
all of these scenarios the motion estimate derived from
RANSAC may not be representative of the true motion
and initializing ICP with this motion can cause ICP to
not converge. We propose a method to overcome these
weaknesses by using generalized ICP not as a motion
refinement tool but as a fallback method if RANSAC
provides an unsatisfactory result.

Figure 8: Limited matching features.

4.1 Dynamic RGB-D Mapping

To overcome the problems of a feature limited environ-
ment, we have developed an algorithm that is capable
of dynamically alternating between motion estimation
techniques. A general flow of our algorithm is detailed
in Figure 4.1.

There are three possible paths in our algorithm. The
first two start with feature extraction and matching with
SIFT features, motion estimation and outlier rejection
based off of the visual correspondences is then per-
formed by RANSAC. After this step the performance
of RANSAC is analyzed, based off of the error returned
from the estimation, as well as the amount of visual cor-
respondences that were found to be inliers. If the result is
satisfactory then the motion estimate is accepted. In the
case of the estimate’s error being high generalized ICP
is used to refine the estimation. The third case estimates
a motion solely from generalized ICP and a random sub-
set of the RGB-D depth data. This is triggered when any
of the following happens:

1. There are not enough visual correspondences to
compute an estimate with RANSAC.

2. The motion estimate generated by RANSAC has
errors high enough to hinder ICP refinement.

3. RANSAC failed to find a motion estimate.

In any of these cases a motion estimate generated by
RANSAC will only serve to hinder ICP from converg-
ing to the correct solution, therefore it is far better for
generalized ICP to search for a motion estimate with-
out the initialization of RANSAC. This path also throws
away the correspondences from the feature detection
and matching stage in place of a random subset of the
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Figure 9: plane-to-plane algorithm flow

entire 3D range data. Generalized ICP does not require
correspondences to converge to a correct motion esti-
mation. This is in part due to the max distance value,
a variable which ignores corresponding points that are
farther away in distance than the max value. This allows
for correct registration, even when there is a lack of full
overlap of point clouds. Full details of the algorithm are
in 4.1.

The algorithm begins by extracting SIFT features from
two consecutive RGB-D frames. The extracted features
are then used generate a set of correspondences between
the two images. With the help of the per pixel depth
information, the matched point clouds are converted
from 2D image coordinates to 3D world coordinates. An
estimate of the motion between the frames, as well as
correspondence outlier rejection is then obtained via the
RANSAC algorithm. It is here at line six that the code
branches into three separate paths. Given the user pro-
vided thresholds τ1, τ2, and µ The decision of whether to
run generalized ICP is based off of the error and number
of inliers returned from the RANSAC motion estima-
tion step. If the error of the estimated motion gener-
ated from the RANSAC algorithm is less then or equal
τ1 and the number of inliers is less then or equal to µ,
then the RANSAC estimate is deemed successful and is
used as the final answer, otherwise generalized ICP is

Dynamic RGB-D mapping[RGBDA,RGBDB]

1: [{FA}, {FB}]← ExtractSIFT(RGBDA, RGBDB)
2: [2DPA, 2DPB]← MatchFeatures(FA, FB)
3: [3DPA, 3DPB]← ConvertTo3DWorld(2DPA, 2DPB)
4: T0 ← I
5: [T, inliers, err]← RANSAC(3DPA, 3DPB, T0)
6: if (sizeo f (inliers) ≤ µ) ∨ (err ≥ τ1) then
7: if err ≥ τ2 then
8: [3DPA, 3DPB] ←

GetCloudSubset(3DPA, 3DPB)
9: T ← GICP(3DPA, 3DPB, I)

10: else
11: T ← GICP(3DPA, 3DPB, T)
12: end if
13: end if

Figure 10: Algorithm: Dynamic RGB-D mapping

used. If the RANSAC error is greater then the user pro-
vided threshold τ2, than the motion estimate provided
by RANSAC is deemed to0 unstable and generalized
ICP starts from scratch. In line 8 a randomized subset of
the full 3D range data provided from the RGB-D depth
frames is extracted. In line 9 generalized ICP registers
the new point clouds using only the identity matrix as an
initialization. If the error is less than τ2 but greater than
τ1, generalized ICP uses the motion estimate and inliers
obtained by RANSAC to enhance the transformation T.

5 Experiments

In order to test the validity of our algorithm, we ran
two separate experiments. The goal of the first exper-
iment was to compare our results to similar RGB-D
mapping algorithms of the robotics community, specif-
ically [18] and [17]. This was accomplished by utiliz-
ing the public RGBD mapping benchmarks provided
by Technische Universität München. While the bench-
mark datasets provided sequences of various lengths
and purposes, all of them contain frames rich with vi-
sual features. So the second experiment was set up in
order to achieve the goal of testing our algorithm in a
feature limited environment. This was accomplished by
collecting our own data to experiment with.

5.1 RGB-D Dataset and Benchmarks

The RGB-D dataset is provided by Sturm’s group [25],
with the intent to provide the computer vision and
robotics community with a set of benchmarks to evalu-
ate RGB-D SLAM systems and 3D object reconstruction.
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Figure 11: XYZ: This benchmark is the smallest bench-
mark in the group. It is composed of simple translatory
motion along the principle axes with little to no rotations.
The general purpose of this sequence is for debugging
camera calibration issues.

The RGB-D data was taken with a Microsoft Kinect sen-
sor, providing 640 x 480 RGB and depth frames at a 30Hz
rate. They have also provided corresponding ground
truth trajectories for evaluation purposes. The ground
truth motion data was taken with a highly accurate mo-
tion capture system, composed of eight 100Hz cameras.

For our experiments we chose five of the benchmarks
from the dataset to focus our study on. The chosen
benchmarks vary in length, difficulty, presence of loops,
and even purpose. We chose these five specific bench-
marks because they span a range of difficulty. For exam-
ple the XYZ benchmark shown in figure 11 is rich with
visual features, is of short duration and has contains
an extraordinarily large amount of loops allowing for
almost constant global optimization. This benchmark
is almost trivial to solve and serves mainly as a tool to
debug camera calibration errors. In contrast the SLAM3
benchmark, shown in Figure 15 is nearly three times
the length, and contains no loops. All benchmarks are
described in Figures 11 to 15 and are ordered by their
difficulty.

The main goal of these experiments was to provide an
empirical comparison of our algorithm vs current state
of the art RGBD mapping methods. This was achieved
by comparing the benchmark results of our Dynamic
RGB-D mapping method (described in Chapter 4) to
the RGBD-SLAM [17] algorithm (described in section
3.5). We also compare results against our pure RANSAC
method (section 3.2) in order to validate that generalized
ICP does improve motion estimation at times.

Figure 12: Floor: With a simple sweep over a wooden
floor, this benchmark contains a vast amount of easy to
track visual features making it an Ideal environment for
RANSAC and visual based tracking systems. The floor
benchmarks is almost entirely on a single planar surface.

Figure 13: Room: This benchmark is a trajectory along
an entire office room. The trajectory ends at the exact
place it starts from, thus closing a single loop. This
benchmark is well suited to debug drift errors and global
optimization corrections.

Name Duration (sec) trajectory Length (m)
XYZ 30.09 7.112
Floor 49.87 12.569
Room 48.90 15.989
Pioneer 155.72 21.73
Slam3 111.9 18.135

Table 1: rgbd benchmarks
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Figure 14: Pioneer: At 155.72 seconds in length, the pio-
neer trajectory is by far the longest tested in these exper-
iments, as well as the first benchmark to have data col-
lected from a pioneer robot. The pioneer was joysticked
through a maze of tables, containers, and other walls.
There are many loops and opportunities for loop clo-
sure in this benchmark, well suited to debug full SLAM
systems.

Figure 15: SLAM3: The Slam3 is similar to the pioneer
trajectory both in length and means of data capture. A
pioneer robot was joysticked through a large hall. The
trajectory contains no loops, proving to be a difficult
data set for algorithms that rely heavily on global opti-
mization.

5.2 Pioneer Hallway Data

In order to test RGB-D mapping in feature limited
environments, we took data of the hallway of our Uni-
versity’s engineering building. This data consists mainly
of white walls and grey carpets, with only doorways
and light fixtures providing reliable features. There are
sections of the trajectory that involve tight corners with
large rotations between frames. This causes some frames
to have little to no features in common. These bench-
marks causes most algorithms to fail, and must not rely
on visual features to compute a transformation. This
data was taken with a Microsoft Kinect attached to a
Pioneer robot.

5.2.1 Adjustable Parameters

Both the RANSAC and generalized ICP algorithms
have a variety of adjustable parameters that affect their
performance. The values of these parameters can greatly
affect the performance of the mapping system. RANSAC
parameters are detailed in Table 3 and the GICP parame-
ters are detailed in Table 4.

6 Results

Presented in this section are the results from both the
RGB-D benchmark experiments and the GMU hallway
sequence experiment. While both experiments are iden-
tical in terms of how the algorithms are run and the
format and nature of data collected, the results from
both are presented in very different formats. The rea-
son being is that the TUM benchmarks provide highly
accurate ground truth data collected from a third party
sensor. Due to time constraints we were unable to col-
lected similar data for our hallway collection. As a result
benchmark data is presented as relative errors with re-
spect to truth data, while the hallway data is merely
comparison of end result plots between algorithms.

6.1 Benchmark Results

Results of the benchmark experiments were calcu-
lated using the CVPR provided evaluation tools. Means
for evaluation coupled with datasets allows for algo-
rithms developed by the community to be tested under a
common process, ensuring accurate comparison results.
There are two means of evaluation: absolute trajectory
error and relative pose error.

The absolute trajectory error (ATE) evaluation method
directly compares the difference between poses in the
ground truth and measured trajectory. Measuring the
absolute position between poses, this error evaluation
is especially useful for evaluating the performance of
visual SLAM systems. The end result of the ATE evalua-
tion method is the root mean squared error (rmse) of the
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Table 2: GMU Hallway Sequence

Name Description
sample size The amount of samples used per iteration to compute a transformation
max iterations The Maximum amount of iterations.
ε Error threshold for acceptable inlier
Min. Inlier Size Minimum amount of inliers for an acceptable transformation

Table 3: RANSAC Parameters

Name Description
max distance The maximum translation allowed before nearest neighbor rejec-

tion.
depth cloud size The size of the 3D cloud created if generalized ICP creates a new

motion estimate.
τ1 Generalized ICP is used to refine the motion estimate, if the error

from RANSAC is greater than this threshold.
τ2 Generalized ICP is used to estimate a new motion with depth

data independent of visual correspondences, If the error from
RANSAC is greater than this threshold.

µ The minimum amount of inliers before additional points are
added.

Table 4: GICP Parameters
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Figure 16: Benchmark evaluation Absolute Trajectory
Error

per pose errors summed over the entire trajectory, it is
calculated in the following way:

ATErmse =
√

1
η (∑

η
i=0 ‖ t̂i − ti ‖

2
)

t̂i =

 x̂
ŷ
ẑ

 ti =

 x
y
z


Where t̂i is the measured pose at position i, and ti is

the truth pose at position i. Results of the ATE evaluation
method on selected benchmarks can be seen in Figure 16.

The relative pose error (RPE) evaluation method di-
rectly compares the difference error in relative motion
between all timestamps in the trajectory. This method is
very useful for evaluating the effect of accumulated drift.
For example the evaluation process can only consider
timestamps of a fixed delta apart, essentially allowing
the user to calculate the drift after a given amount of
time. Results from this method are separated into trans-
lational errors and rotational errors, this can be seen in
Figure 17 which shows the RPE results of a 1.0 second
drift on all benchmarks for every algorithm.

Considering that measured data and truth data may
lie in different orientations and positions, the evaluation
method must first rotate and translate the entire mea-
sured trajectory to fit with the truth data. After the two
trajectories are aligned, the method simply calculates the
motion between the given timestamps. As with the ATE
method, results from the REP method will be presented
in terms of the root mean squared error over the entire
trajectory. The RPE method calculates both translational
and rotational errors in the following way:

TransRPE

√
1
η (∑

η
i=0 ‖ t̂i − ti ‖

2
)

RotRPE =
√

1
η (∑

η
i=0 ‖ Ri

T R̂i ‖
2
)

Where (t̂i, R̂i) and (ti, Ri) are the relative translations
and rotations between frames of a specified time apart,
for measured and truth data respectively.

This section will detail the results of comparing the
dynamic RGB-D mapping method against various algo-
rithms for five separate benchmarks. Results have been
calculated with both the ATE and RPE methods.

6.1.1 Short Duration Benchmarks

The first set of benchmarks to be tested were the
so called short duration benchmarks. These are the 3
benchmarks under fifty seconds long: xyz, floor and
room. Overall results are detailed in Figures 16 and 17,
for absolute trajectory errors and relative pose errors
respectively.

In these short duration benchmarks, both RANSAC
alone and the dynamic RGB-D mapping method pro-
duced nearly identical results, while Freiburg’s RGBD-
SLAM algorithm performed slightly better then either.
The error gap between RGBD slam and our algorithms
could be perhaps attributed to the amount of loops in
these bench marks and our lack of loop closure and
global optimization in our algorithm.

As stated in Chapter 5, there are a few configurable
parameters for both the RANSAC and generalized ICP
algorithm, parameter choices for these short duration
benchmarks are detailed in Table ?? and ??. It can be seen
that all parameters remain a constant value for every
benchmark, with the exception of GICP’s error thresh-
old. This is the maximum RANSAC error before general-
ized ICP used. These values differ between benchmarks,
due to RANSAC performing differently between bench-
marks. The general strategy for the hybrid mapping
method was to use GICP when RANSAC fails, to do
this we must set this error threshold at a level above the
normal RANSAC errors. A look at RANSAC errors in
Figure 18, shows that these error values correspond to a
point when only error spikes are above the threshold.
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Figure 17: Benchmark Evaluation relative pose error

Figure 18: short distance RANSAC errors
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XYZ The XYZ benchmark being the most simple and
shortest benchmarks expectedly produced the smallest
error values for every case. A comparison of realitive
pose errors with a 1.0 second drift (Figure 19) shows
that RGBD-SLAM consistently outperforms both our
RANSAC and dynamic RGB-D method in the first 15
seconds. All algorithms perform nearly identical for the
remainder of the benchmark but for one exception: there
are occasional error spikes seen in both the RANSAC
and Dynamic RGB-D methods. An explanation for the
spikes perhaps, is our lack of global optimization.

Figure 19: XYZ RPE 1.0 second drift

Along with the error spikes, there is little to no effect
on the results when compared with the pure RANSAC
algorithm. This can be explained by how well RANSAC
performs in this benchmark, it can be seen in Figure 18
that the xyz benchmark has RANSAC errors consistently
less than .04 meters.

Figure 20: XYZ Absolute Trajectory Plots
(RANSAC,Dynamic RGB-D,RGB-D SLAM)
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Floor With its environment rich with visual features,
computing visual correspondences and generating a mo-
tion estimate with RANSAC was expected to be highly
successful. Figure 18 shows that the floor benchmark
had the lowest overall RANSAC errors. For the major-
ity of the run all of the algorithms performed much the
same.

Figure 21: Floor RPE 1.0 second drift

Occasional errors are seen in the beginning and end of
the trajectory for both our RANSAC and dynamic RGB-
D method as well as a drift in translational error from the
RGBD-SLAM implementation in the beginning of the
trajectory. These might be caused by our lack of global
optimization as there are a number of opportunities for
loop closure. Figure 22 displays the absolute trajectory
error plots of all three algorithms, it is interesting to note
that while the summed errors in Figure 16 are slightly
lower for RGB-D SLAM there are points in the trajectory
where the dynamic method has smaller errors, especially
in the top right corner of the plot.

Figure 22: Floor Absolute Trajectory Plots
(RANSAC,Dynamic RGB-D,RGB-D SLAM)
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Room The room benchmark is a sweep through an
office ending at the same point as the beginning, causing
the trajectory to be one large loop. Relative pose errors
with a 1.0 second drift are posted in Figure 23. All three
algorithms have nearly identical rotational errors with
the exception of a couple of spikes from each algorithm
in different locations.

Figure 23: Room RPE 1.0 second drift

Our RANSAC and dynamic RGB-D methods have
relatively high translational errors near the beginning
of the trajectory, near the 30 second mark however, all
algorithms nearly the same translational error. There is
one very large error spike near the 25 second mark from
RGB-D SLAM that our methods managed to avoid.

As with the other two short duration benchmarks, the
dynamic RGB-D method did no better than standalone
RANSAC. It is possible that the RANSAC errors are so
low, being on average approximately 0.5 centimeters or
less, that generalized ICP could not improve upon them.

Figure 24: Room Absolute Trajectory Plots
(RANSAC,Dynamic RGB-D,RGB-D SLAM)
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6.1.2 Medium Distance Benchmarks

In addition to the short duration benchmarks we also
tested our algorithms on two longer trajectories, between
100 and 160 seconds in length. Overall results are de-
tailed in Figures 16 and 17, for absolute trajectory er-
rors and relative pose errors respectively. Per frame
RANSAC errors for our algorithm can be found in fig-
ure ??. The purpose of testing against these benchmarks
was to get an idea of how our algorithms are performing
with respect to error due to accumulated drift.

Figure 25: Medium distance RANSAC errors

With the absence of loop closure and global optimiza-
tion we expected to perform better in short duration
benchmarks and worse in longer trajectories, but just
the opposite was found to be true. The results of these
longer trajectories are strikingly different compared to
the short distance benchmarks. In both the pioneer and
slam3 trajectories our standalone RANSAC algorithm
had lower errors than RGBD-SLAM, and our dynamic
RGB-D method had lower errors than our standalone
RANSAC algorithm (Figures 16 and 17).
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Pioneer The pioneer benchmark was our first long dis-
tance test. Relative pose errors with a 1.0 second drift
are detailed for every algorithm on this benchmark in
Figure 26. Both the RANSAC and dynamic RGB-D map-
ping algorithms show consistently lower errors through-
out the trajectory. There are frequently areas where the
dynamic RGB-D method corrected errors made in the
RANSAC algorithm, examples of this can be seen in
translational error at 50, 120, and 150 seconds.

Figure 26: Pioneer RPE 1.0 second drift

These results are very curious and unexpected. The
Pioneer SLAM benchmark contains many loops, which
should be a great candidate for loop closure / global op-
timization improvements yet our algorithm outperforms
RGBD-SLAM which implements a global optimization
method. A possible answer to this might be a possible
introduction of false loops into their loop closure algo-
rithms. It is also possible that their algorithm suffered
from overuse of generalized ICP and/or the initializa-
tion of generalized ICP with an inferior RANSAC esti-
mate caused generalized ICP not to converge. The abso-
lute trajectory plots (Figure 27) affirms that the dynamic
RGB-D method’s trajectory is the closest to ground truth.

Figure 27: Pioneer Absolute Trajectory Plots
(RANSAC,Dynamic RGB-D,RGB-D SLAM)
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Slam3 Slam3 results are similar to the pioneer bench-
mark. Details of the relative pose errors are in Figure 28.
It shows that there are times when the RGB-D SLAM’s
translational error is larger by a full meter. This can
be seen near frame 50, frame 65, and frame 98. There
are also areas where the dynamic-RGB-D method has
lower errors than RANSAC, proving that generalized
ICP correcting areas where RANSAC is returning poor
estimations.

Figure 28: SLAM3 RPE 1.0 second drift

In both medium distance benchmarks, the dynamic
RGB-D mapping algorithm produced the smallest rel-
ative pose errors and absolute trajectory errors. Our
algorithm not only outperforms a global optimization
algorithm in a trajectory with many loops, but it also
does so in a no loop situation as well. There are two
main differences between our dynamic RGB-D mapping
method and RGB-D SLAM:

1. RGB-D SLAM contains global pose estimation, dy-
namic RGB-D mapping does not.

2. RGB-D SLAM utilizes generalized ICP to refine a
motion estimate based off of RANSAC, dynamic
RGB-D chooses which algorithm to use depending
on the circumstances.

These facts point to a few conclusions; either global op-
timization is hindering the result by false loops or gen-
eralized ICP should not be used in all circumstances,
and when it is it should not be initialized by a motion
estimate with high errors.

Figure 29: SLAM3 Absolute Trajectory Plots (RANSAC,
Dynamic RGB-D, RGB-D SLAM)
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6.2 Hallway Results

The intent of the hallway experiments was to see how
the dynamic RGB-D method performed in a feature lim-
ited environment. This was accomplished by collecting
data of some simple trajectories in the hallways of our
University’s engineering building. A summary of the
trajectory is shown in Figure ??. The sequence is approx-
imately 600 frames and features blank grey walls and
solid carpets. it features a straight trajectory down a
hallway, one 90◦ turn to the right and a small distance
down the next hallway.

Figure 30: Hallway Comparison

The format of our results for this experiment are quite
different from the benchmark data. We did not have
the resources or time to collect detailed truth data as
was provided with the RGBD benchmarks. Therefore
the results provided are comparison plots of the calcu-
lated trajectories as can be seen in Figure 6.2. The Figure
shows the pure RANSAC algorithm on the left in red
compared with the Dynamic RGB-D method on the right
in green. Comparing these trajectories to Table 2, it is evi-
dent that the pure RANSAC algorithm does not perform
very well. The first straight away starting from point (0,0)
veers to the right by at least five meters, while the 90◦

is all but ignored. The Dynaic RGB-D trajectory shows
an accurate approximation of the trajectory. While more
work needs to be done to quantify the errors between
these algorithms, it is self evident that the plane-to-plane
method can cope with these environments where the
RANSAC only algorithms cannot.

7 Conclusions

The primary goals of our experiments have been met.
We were able to benchmark our dynamic RGB-D algo-
rithm against against a current state of the art method
with positive results as well as prove that dynamic RGB-
D ICP can cope with scenarios that is difficult for RGB-D
sensors.

While we only tested against a limited number of
benchmarks we can hypothesize on a couple of theories.

The first is that in the face of many loops, global opti-
mization can improve local motion estimates. The obser-
vations made in the short duration benchmark results
(Section 6.1) showed that the RGB-D SLAM algorithm
consistently outperformed the dynamic RGB-D mapping
in simple trajectories that are rich in visual features and
contain many loops. Since very low RANSAC errors in
all of the short duration benchmarks leads us to believe
that generalized ICP would do little to refine these trajec-
tories, leaving only one real difference between RGB-D
SLAM and dynamic RGB-D, global optimization.

The second hypothesis is that as trajectories grow
longer in length and become increasingly difficult the
need for a method of dynamically alternating between
both vision and depth based algorithms increases. This
was observed when comparing our dynamic RGB-D
method with RGB-D SLAM in our two medium distance
benchmark experiments. Despite our algorithm lack-
ing loop closure we were able to drastically outperform
RGB-D SLAM in both a trajectory that contained many
loops and one that contained none. Disregarding global
optimization the main difference between our algorithm
and RGB-D SLAM is the role Generalized ICP plays.
In the RGB-D SLAM method, generalized ICP acted
as a mandatory refinement step, picking up where the
RANSAC algorithm leaves off. In the dynamic RGB-D
method, generalized ICP and RANSAC are used accord-
ing to observed errors from the initial RANSAC motion
estimate. This would allows to hypothesize that there
are certain conditions when the RANSAC motion esti-
mate might be is off to a degree where it will hinder
generalized ICP from converging, and may even cause
further deviation from the correct transformation. This
makes it necessary at times to abandon the RANSAC es-
timate and have generalized ICP start from scratch. Our
RGB-D mapping algorithm does this and has proven to
outperform a state of the art RGB-D mapping algorithm,
even in absence of global optimization.

The benchmark results proved that our dynamic RGB-
D mapping method was able to successfully approxi-
mate our hallway trajectory dataset, compared to the
standalone RANSAC algorithm which did not. The ini-
tial results show that dynamic RGB-D mapping has po-
tential to solve the current problems of mapping with
RGB-D sensors.

7.1 Future Work

Despite the successes of both the RGB-D benchmark
experiments as well as the feature limited hallway, there
is still a great deal of work and improvement that can
be done. This section acts as a launch pad of ideas, and
future goals for the dynamic RGB-D mapping algorithm
as well as the RGB-D mapping problem in general.

Global Optimization In Section 6.1 our results
showed that the dynamic RGB-D mapping algorithm
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could outperform RGBD-SLAM in situations that highly
favor algorithms with loop closure and global optimiza-
tion, as well as situations where loop closure had no ef-
fect. This would point to the fact that the addition of loop
closure and global optimization to our algorithm could
possibly improve are results even more. We present both
a loop closure algorithm as well as a global optimization
method that could be added to our algorithm.

Loop Closure Given two images it is simple to calcu-
late the likelihood that they are images taken of the same
space. The problem is that given a map with thousands
of images, it is too time consuming to compare a new
image, with each image in the map. Even if you disre-
gard the past X images, the time of loop closure grows
with the size of the map. This problem has been solved
by [5]. Given a database of 50,000 images, they are able
to perform a loop query in 25ms. This is achieved by
first building a hierarchical k-means tree, consisting of
images taken in the given environment. As new images
are taken, their features are extracted and pushed down
the tree. Each feature will have a unique path down the
tree, this can be thought of as a features identification.
An inverted file index can be found at every leaf of the
tree. If an image’s feature ID ends at the leaf, its image in-
dex will be added to the inverted file index. For a given
image, it can query the existing database by computing
IDs for each feature, and comparing it to the inverted
file indices. The hierarchical nature of the descriptor tree
makes this query run very quickly.

Graph SLAM Graph SLAM (Simultaneous localiza-
tion and mapping) is the the solution to the SLAM prob-
lem using a graph structure with a probabilistic frame-
work. The SLAM problem is that there will always be
errors in a robot’s odometry and sensors. There is only
so much the scan matching portion of the code can do
about it. If the errors build up too much it will cause the
map to become inaccurate and fail. The Graph SLAM
problem can help to cope with some of the errors by in-
corporating loop constraints into the global optimization
framework.

Further Experiments While the hallway experiments
and results proved that using generalized ICP along
with RANSAC is a viable method for coping with fea-
ture limited environments, More experiments with a bet-
ter means of evaluating results needs to be performed.
We propose collecting data and performing experiments
much in the same vein as the TUM RGB-D dataset, with
a focus on feature limited environments and difficult
trajectories where current RGB-D methods will fail. This
will serve as a way to test the robustness of RGB-D map-
ping algorithms and perhaps assist in the development
of new algorithms to overcome these difficult situations.
In this thesis we tested our algorithm against five bench-

marks comparing to two separate algorithms. In order to
fully grasp the performance of our algorithm, we need
to evaluate against trajectory in the benchmark dataset.
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